skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Swaroop, Siddarth"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In settings where an AI agent nudges a human agent toward a goal, the AI can quickly learn a high-quality policy by modeling the human well. Despite behavioral evidence that humans hyperbolically discount future rewards, we model human as Markov Decision Processes (MDPs) with exponential discounting. This is because planning is difficult with non-exponential discounts. In this work, we investigate whether the performance benefits of modeling humans as hyperbolic discounters outweigh the computational costs. We focus on AI interventions that change the human's discounting (i.e. decreases the human's "nearsightedness" to help them toward distant goals). We derive a fixed exponential discount factor that can approximate hyperbolic discounting, and prove that this approximation guarantees the AI will never miss a necessary intervention. We also prove that our approximation causes fewer false positives (unnecessary interventions) than the mean hazard rate, another well-known method for approximating hyperbolic MDPs as exponential ones. Surprisingly, our experiments demonstrate that exponential approximations outperform hyperbolic ones in online learning, even when the ground-truth human MDP is hyperbolically discounted. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. We provide new connections between two distinct federated learning approaches based on (i) ADMM and (ii) Variational Bayes (VB), and propose new variants by combining their complementary strengths. Specifically, we show that the dual variables in ADMM naturally emerge through the "site" parameters used in VB with isotropic Gaussian covariances. Using this, we derive two versions of ADMM from VB that use flexible covariances and functional regularisation, respectively. Through numerical experiments, we validate the improvements obtained in performance. The work shows connection between two fields that are believed to be fundamentally different and combines them to improve federated learning. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026